Skip to contents

Main

wisp()
Fit wisp to count data

Model functions

wisp.sigmoid()
Wisp sigmoid function, implemented in R
wisp.warp()
Wisp warping function, implemented in R

Analysis functions

analyze.residuals()
Analyze residuals from wisp fit
pvalues.samples()
Compute p-values using ecdf from parameter resamples
sample.stats()
Estimate p-values and confidence intervals from resampled parameters

Plotting functions

plot.MCMC.bs.comparison()
Visually compare normality and autocorrelation of bootstrap and MCMC parameter estimates
plot.MCMC.walks()
Plot sampling of random walks and negative log likelihood from MCMC simulations
plot.decomposition()
Plot individual components of wisp fit for a single species level
plot.effect.dist()
Plot parameter distributions from WISP results as histograms
plot.parameters()
Plot of wisp parameters
plot.ratecount()
Plot fitted model and data
plot.species.summary()
Print rate-count, residual, and parameter plots for one species level together.
demo.sigmoid.plots()
Make plot demonstrating how the wisp function is determined by the Rt, slope, and tpoint parameters
demo.warp.plots()
Make plot demonstrating how the wisp function is warped by the warping factors

MERFISH preprocessing functions

make_count_data()
Load and parse data, HDF5
make_count_data_csv()
Load and parse data, csv
cortical_coordinate_transform()
Function to transform coordinates for each mouse and extract layer boundary estimates
create.count.data.WSPmm()
Function to convert to WSPmm format