Function to process autocorrelation of neuron list
process.autocorr.Rd
First estimates autocorrelation of each neuron in the list, then fits an exponential decay function to the estimated autocorrelation, and finally collects and returns summary statistics for each neuron.
Usage
process.autocorr(
neuron_list,
bin_count_action = "sum",
max_lag = 0,
A0 = 0.001,
tau0 = 1,
ctol = 1e-08,
max_evals = 500,
check_autofiring_ratio = FALSE,
print_plots = FALSE,
plot_time_cutoff = Inf,
use_raw = TRUE
)
Arguments
- neuron_list
An R list of neuron objects.
- bin_count_action
Method for counting spikes in each bin when computing autocorrelation; one of "boolean", "mean", or "sum" (default: "sum").
- max_lag
Maximum lag (in units of the trial data) to compute autocorrelation; if 0, uses the number of time bins in the neuron's trial data (default: 0).
- A0
Initial guess for amplitude parameter of exponential decay function (default: 0.001).
- tau0
Initial guess for time constant parameter of exponential decay function (default: 1.0).
- ctol
Convergence tolerance for fitting exponential decay function (default: 1e-8).
- max_evals
Maximum number of evaluations for fitting exponential decay function (default: 500).
- check_autofiring_ratio
Logical indicating whether to check the assumption that autocorrelation values are below the mean firing rate with
test.sigma.assumption
function (default: FALSE).- print_plots
Logical indicating whether to print autocorrelation plots for each neuron (default: FALSE).
- plot_time_cutoff
Maximum lag (in bins) to display on the x-axis of plots (default: Inf).
- use_raw
Logical indicating whether to use raw autocorrelation (true) or standard centered and normalized correlation (false) (default: TRUE).