Function to estimate autocorrelation parameters using dichotomized Gaussian simulations
estimate.autocorr.params.Rd
This function performs the same estimate-and-fit procedure as process.autocorr
, but does so multiple times for each neuron using simulated spike rasters generated from a dichotomized Gaussian model of that neuron.
Usage
estimate.autocorr.params(
neuron_list,
n_trials_per_sim = 300,
n_sims_per_neurons = 100,
bin_count_action = "sum",
max_lag = 0,
A0 = 0.001,
tau0 = 1,
ctol = 1e-08,
max_evals = 500,
use_raw = TRUE
)
Arguments
- neuron_list
An R list of neuron objects.
- n_trials_per_sim
Number of trials to simulate for each simulation (default: 300).
- n_sims_per_neurons
Number of simulations to run for each neuron (default: 100).
- bin_count_action
Method for counting spikes in each bin when computing autocorrelation; one of "boolean", "mean", or "sum" (default: "sum").
- A0
Initial guess for amplitude parameter of exponential decay function (default: 0.001).
- tau0
Initial guess for time constant parameter of exponential decay function (default: 1.0).
- ctol
Convergence tolerance for fitting exponential decay function (default: 1e-8).
- max_evals
Maximum number of evaluations for fitting exponential decay function (default: 500).
- use_raw
Logical indicating whether to use raw autocorrelation (true) or standard centered and normalized correlation (false) (default: TRUE).