Skip to contents

This function performs the same estimate-and-fit procedure as process.autocorr, but does so multiple times for each neuron using simulated spike rasters generated from a dichotomized Gaussian model of that neuron.

Usage

estimate.autocorr.params(
  neuron_list,
  n_trials_per_sim = 300,
  n_sims_per_neurons = 100,
  bin_count_action = "sum",
  max_lag = 0,
  A0 = 0.001,
  tau0 = 1,
  ctol = 1e-08,
  max_evals = 500,
  use_raw = TRUE
)

Arguments

neuron_list

An R list of neuron objects.

n_trials_per_sim

Number of trials to simulate for each simulation (default: 300).

n_sims_per_neurons

Number of simulations to run for each neuron (default: 100).

bin_count_action

Method for counting spikes in each bin when computing autocorrelation; one of "boolean", "mean", or "sum" (default: "sum").

A0

Initial guess for amplitude parameter of exponential decay function (default: 0.001).

tau0

Initial guess for time constant parameter of exponential decay function (default: 1.0).

ctol

Convergence tolerance for fitting exponential decay function (default: 1e-8).

max_evals

Maximum number of evaluations for fitting exponential decay function (default: 500).

use_raw

Logical indicating whether to use raw autocorrelation (true) or standard centered and normalized correlation (false) (default: TRUE).

Value

A list containing a data frame of autocorrelation parameter estimates (one row per simulation), a data frame of neuron identifiers (one row per neuron), and the number of simulations run per neuron.